- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001100001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Dou, Zehao (3)
-
Chen, Sitan (2)
-
Goel, Surbhi (2)
-
Klivans, Adam (2)
-
Meka, Raghu (2)
-
Fan, Zhou (1)
-
Zhou, Harrison H. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chen, Sitan; Dou, Zehao; Goel, Surbhi; Klivans, Adam; Meka, Raghu (, Conference on Learning Theory)We consider the well-studied problem of learning a linear combination of k ReLU activations with respect to a Gaussian distribution on inputs in d dimensions. We give the first polynomial-time algorithm that succeeds whenever k is a constant. All prior polynomial-time learners require additional assumptions on the network, such as positive combining coefficients or the matrix of hidden weight vectors being well-conditioned. Our approach is based on analyzing random contractions of higher-order moment tensors. We use a multi-scale analysis to argue that sufficiently close neurons can be collapsed together, sidestepping the conditioning issues present in prior work. This allows us to design an iterative procedure to discover individual neurons.more » « less
-
Chen, Sitan; Dou, Zehao; Goel, Surbhi; Klivans, Adam; Meka, Raghu (, The Thirty Sixth Annual Conference on Learning Theory (COLT 2023))
An official website of the United States government

Full Text Available